

# ASHLANDS PRIMARY

# **Calculations Policy**

Updated January 2025

Page 1 of 24

This policy has been written in line with the new national curriculum of 2014. (See appendix) It aims to provide guidance so that all children will be able to use an efficient and accurate formal written method. The stages leading to each formal method are given in this policy. Teachers and staff should use their judgements as to where each child is currently working and begin developing their understanding from that stage. Thanks to the White Rose Hub and NCETM for providing supporting content.

Some points to note:

- $\circ$  We will use the vocabulary Thousands Hundreds Tens and Ones (TH H T O)
- When writing large numbers, we will use commas.
- When teaching x 10, 100 ÷10,100 we will use the language that the numbers slide either left or right and a zero appears which becomes the place holder (rather than add a zero).
- In formal written methods children will be asked to;
  - $\succ$  line up the HTO
  - > start by adding the ones, when you start a written column method start from the right
  - > any carrying will be shown below the line
  - > when using decomposition, the word 'Exchange' is used.
  - > remainders will be recorded as r12 (full size number)
  - > Decimal points will be positioned on the line.

### Calculation Policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

| Objective and<br>Strateov                                                 | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pictorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abstract                                                                                                                                              |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combining two parts to<br>make a whole: part-<br>whole model              | Image: Constraint of the second se | Image: state stat | 4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.<br>10=6+4 5 3 Use the part-part whole diagram as shown above to move into the abstract. |
| Starting at the bigger<br>number and counting on<br>(using a number line) | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 + 5 = 17 $+ + + + + + + + + + + + + + + + + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 + 12 = 17<br>Place the larger number in<br>your head and count on the<br>smaller number to find your<br>answer.                                     |

|                        |                                                                                  | 4                                                                                                         | The abstract number line:<br>What is 2 more than 4?<br>What is the sum of 2 and 4?<br>What is the total of 4 and 2?<br>4+2 |
|------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Regrouping to make 10. | 6 + 5 = 11<br>Start with the bigger number and use the smaller number to make 10 | Use pictures or a<br>number line. Regroup<br>or partition the smaller<br>number to make 10.<br>9 + 5 = 14 | 7 + 4= 11<br>If I am at seven, how many<br>more do I need to make 10.<br>How many more do I add on<br>now?                 |
|                        |                                                                                  |                                                                                                           | 6 + 🗆 = 11<br>6 + 5 = 5 + 🗆<br>6 + 5 = 🗆 + 4                                                                               |

| Adding three single<br>digits.                                  | <ul> <li>4 + 7 + 6= 17<br/>Put 4 and 6 together to make 10. Add<br/>on 7.</li> <li>Following on from making 10, make 10<br/>with 2 of the digits (if possible) then add<br/>on the third digit.</li> <li>Find the number bonds!</li> </ul> | Add together three groups of objects. Draw a picture to recombine the groups to make 10.<br>Set out drawings in a ten-frame style to support. ::::: | 4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make 10 and then add on the remainder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Column Method<br>(no regrouping)<br>TO + O, TO<br>using base 10 | 24 + 15=<br>Add together the ones first then add the<br>tens. Use the Base 10 blocks first before<br>moving onto place value counters.<br>TO<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                              | After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.                | $41+8 = 9 \\ 40+9=49 \\ 40+9=49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 \\ 40 + 9 = 40 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 40 + 9 \\ 4$ |
|                                                                 | 41+8                                                                                                                                                                                                                                       | Children represent the tens and ones<br>using a line for tens and a square or<br>circle for ones.                                                   | Calculations<br>21 + 42 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 |                                                                                                                                                                                                                                            | 10s 1s<br>1111<br>4 9                                                                                                                               | 21<br>+ <u>42</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Page 6 of 24

| Conceptual Variation; different ways to ask children to solve 21 + 34 |                                                                                                                            |                                                  |                         |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
| 21 34                                                                 | Word problems:<br>In year 3, there are 21 children and in<br>year 4, there are 34 children.<br>How many children in total? | 21<br>+34<br>21+34=<br>= 21+34                   | Missing digit problems: |
| ?<br>21 34                                                            | 21 + 34 = 55. Prove it                                                                                                     | Calculate the sum of twenty-one and thirty-four. | ?                       |

## Calculation Policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

| Objective and<br>Strategy | Concrete                                                                                                                                                                                         | Pictorial                                                                                                                                                                            | Abstract                                                                                          |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Taking away ones          | Use physical objects, counters, cubes<br>etc to show how objects can be taken<br>away.<br>6-2=4<br>(ten frames, Numicon, cubes and other items such as<br>beanbags could be used).<br>4-3=1<br>1 | Cross out drawn objects to show what has been taken<br>away.<br>$\begin{array}{c} \hline \\ \hline $ | 18 - 3 = 15 $8 - 2 = 6$ $4 - 3 =$ $4 - 3$ $4 - 3$ $4 - 3$ $4 - 3$ $4 - 3$ $4 - 3$ $4 - 3$ $4 - 3$ |



Page 9 of 24





#### Column method (with regrouping)



Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.

Make the larger number with the place value counters



Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.



Now I can subtract my ones.



Represent the base 10 pictorially, remembering to show the exchange.





105

1410



Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.

When confident, children can find their own way to record the exchange/regrouping.

Just writing the numbers as shown here shows that the child understands the method

and knows when to exchange/regroup.



Children can start their formal written method by partitioning the number into clear place value columns.



Moving forward the children use a more compact method. - 3/4 '| - 2 6 - 1 5

This will lead to an understanding of subtracting any number including decimals.





## Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

| Objective and<br>Strategy | Concrete                                                          | Pictorial                                                                   | Abstract                                                                                                                             |
|---------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Doubling                  | Use practical activities to show how to<br>double a number.       | Draw pictures to show how to double a number.<br>Double 4 is 8              | 16 $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$                                                                                           |
| Counting in multiples     | Count in multiples supported by concrete objects in equal groups. | Use a number line or pictures to continue support in counting in multiples. | Count in multiples of a<br>number aloud.<br>Write sequences with<br>multiples of numbers.<br>2, 4, 6, 8, 10<br>5, 10, 15, 20, 25, 30 |



| Arrays-showing<br>commutative<br>multiplication | Use arrays to illustrate commutativity counters and other<br>objects can also be used.<br>$2 \times 5 = 5 \times 2$<br>2 lots of 5 5 lots of 2 | The second se | Children to be able to use an array to write a<br>range of calculations e.g.<br>$10 = 2 \times 5$<br>$5 \times 2 = 10$<br>2 + 2 + 2 + 2 + 2 = 10<br>10 = 5 + 5<br>5 + 5 + 5 = 15<br>3 + 3 + 3 + 3 + 3 = 15<br>$5 \times 3 = 15$<br>$3 \times 5 = 15$ |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Partitioning                                    | Partition to multiply using Numicon, base 10 or Cuisenaire<br>rods.<br>4 × 15                                                                  | Children to represent the concrete manipulatives pictorially.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Children to be encouraged to show the steps<br>they have taken.<br>$4 \times 15$<br>10 = 5<br>$10 \times 4 = 40$<br>$5 \times 4 = 20$<br>$40 \cdot 20 = 60$<br>A number line can also be used<br>$40 = 10 = 10^{-10}$                                |



#### Formal column method

Children can continue to be supported by place value counters at the stage of multiplication.



It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.

Formal column method with place value counters (base 10 can also be used.)  $3 \times 23$ 







Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

8 - 59 8 - 60 - 8 8 - 6 - 45 8 - 60 = 410 480 - 8= (472) 4 + 350ml 4= 200ml 8 + 200ml 8 + 200ml 4 + 4 + 2 + 2 + 16 5 = 8 = 40 jugs.



000

000

00



Page 18 of 24

| Conceptual variation; different ways to ask children to solve 6 × 23 |                                                      |                              |                                                  |
|----------------------------------------------------------------------|------------------------------------------------------|------------------------------|--------------------------------------------------|
| 23 23 23 23 23 23                                                    | Mai had to swim 23 lengths, 6 times<br>a week.       | Find the product of 6 and 23 | What is the calculation?<br>What is the product? |
| ?                                                                    | How many lengths did she swim in one week?           | 6 × 23 =                     | 100s 10s 1s                                      |
|                                                                      | With the counters, prove that $6 \times 23$<br>= 138 | 6 23<br>× 23 × 6             |                                                  |
|                                                                      |                                                      |                              |                                                  |

### Calculation Policy: Division

Key language: share, group, divide, divided by, half.

| Sharing objects into<br>groups Children use pictures | or shapes to share quantities. | Share 9 buns between three                                                                                           |
|------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                                      |                                | people.<br>$9 \div 3 = 3$<br>$6 \div 2 = 3$<br>Children should also be encouraged to use their 2 times tables facts. |

| Division as grouping   | Divide quantities into equal groups.<br>Use cubes, counters, objects or place<br>value counters to aid understanding.<br>1000000000000000000000000000000000000                                                      | Use a number line to show jumps in groups. The number<br>of jumps equals the number of groups.<br>0  1  2  3  4  5  6  7  8  9  10  11  12<br>$\downarrow \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 ÷ 7 = 4<br>Divide 28 into 7 groups.<br>How many are in each<br>group?                                                                                                                      |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Division within arrays | Link division<br>to<br>multiplication<br>by creating<br>an array and<br>thinking<br>about the<br>number sentences that can be created.<br>Eg $15 \div 3 = 5$ $5 \times 3 = 15$<br>$15 \div 5 = 3$ $3 \times 5 = 15$ | Image: Constraint of the second se | Find the inverse of<br>multiplication and division<br>sentences by creating four<br>linking number sentences.<br>$7 \times 4 = 28$<br>$4 \times 7 = 28$<br>$28 \div 7 = 4$<br>$28 \div 4 = 7$ |







